Decision making based on historical data

This presentation / project reflects basics about data distribution. These topics described are mostly from 

variance: https://mathworld.wolfram.com/Variance.html

skewness: http://mathworld.wolfram.com/Skewness.html

Files needed for presentation / project:

CBOP1.mat

1) Explain the variance and skewness :

A) Show simple example on how to calculate variance and then explain the meaning of it.

B) Show simple example on how to calculate skewness and then explain the meaning of it :

idea about skewness :  relMeanMedian_skew.png

2) After loading the CBOP1.mat into Octave, explain what matrix S represents for each stock price distribution – what do the attributes explain :

row in S is for skewness, median, mean, standard deviation, and the last price (for each stock)

3) Draw your own conclusions based on what you learnt under 1) and 2)

A) Assuming you want to conclude based on historical data, draw conclusions from figure  P1F3.pdf

- there are 6 stocks LLY, TNK, NEE, NAK, LEE, and LORL

– in title brackets are the relative differences between last price and mean / median / mode

Which ones you would sell and why?

Which ones you wold buy and why?

~~~For this or similar assignment papers~~~